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Abstract— )( PP -nucleus interactions at 200 GeV/c have been studied. Two cases are considered; the charged pions multiplicity 

distribution and the negative ones. The neural net work (NN) technique has been adopted to study the same two cases, the trained NN 

shows a better fitting with experimental data than the PTFM calculations do. The NN simulation results are satisfactory and prove a vital 

and strong presence in modeling )( PP –nucleus interactions at 200 GeV/c. From paper to paper; we prove that the NN technique is 

better than the old conventional ones. 

Index Terms— Artificial intelligence (AI), machine learning (ML), NN technique, multiplicity distribution, (h-A) interactions.   

 

——————————      —————————— 

1 INTRODUCTION                                                                     

Xperimental data on hadron-nucleus (h-A) interactions at 
high energies are required for understanding high energy 
interactions. They provide a useful link between hadron-

hadron (h-h) interactions and the complex phenomena of nu-
cleus-nucleus (A-A) interactions. These types of interactions 
investigate space time picture and highlight on phenomenon 
which doesn't exist in (h-h) such as cascade, multi-collisions, 
gray particles, etc. There are various models for (h-A) interac-
tion like collective tube model [1], diffractive excitation mod-
el[2], energy flux cascade model [3], quark model [4],  interanu-
clear cascade model [5]  multiple scattering model [6], hydro-
dynamical  model [7], and many others .  

  From view point of parton two fireball model (PTFM), nu-
cleons are treated as composite objects of loosely bound states 
of the spatially separated constituents (quarks) which in turn 
are composed of point-like particles (partons) [8]. This may al-
low one to consider the nucleons as consisting of a fixed num-
ber of partons.  This nucleon structure has been used in differ-
ent models [8-10] along with other assumptions to describe h-A 
interactions.  PTFM, which is proposed by Hagedorn [11] and 
developed by Tantawy [12], has been used to explain the high 
energy interactions of hadrons and nuclei [12-18].  All these 
studies showed qualitative predictions of the measured parame-
ters [19-23].   

Analogous to the theoretical approach based on different 
views, development in the artificial intelligence (AI) field has 
given the neural networks a strong presence in high-energy 
physics [24-27]. Neural networks are composed of simple in-
terconnected computational elements operating in parallel. 
These artificial neural networks (ANNs) are trained, so that a 

particular input leads to a specific target output. The objective 
of this paper is to extract the multiplicity distribution of 
charged pions for Ah  collisions at 200 GeV/c using NNM 
compared to PTFM. Section 2 presents parton two fireball 
model PTFM at high energies for the multiparticle production 
in hadron-nucleus Ah  collisions. The NN model is de-
scribed in Sections 3, 4. The results and discussion of both 
models are compared in Section 5. 

  

2     PARTON TWO FIREBALL MODEL (PTFM)   

Multiplicity of the created charged particles and other parame-
ters in h-A interactions can be determined only by the overlap-
ping volume participating in the interaction at a given impact 
parameter [12, 14, 17, 18].   

    Let us assume that a proton with mass m and radius 0r is in-

cident on a nucleus of radius R .The overlapping volume at any 
impact parameter, V (b), is given by, 
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 If we define a dimensionless impact parameter
R)(r

b
= x 

0 
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then the fraction of partons from the projectile that participate 
in the interaction at a given impact parameter, Z(x), can be giv-
en by,   
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and the statistical impact parameter distribution is given by 
 

                                   dx x 2dx  P(x)                                (3) 

    The total probability of peripheral collisions .PrP will be given 

by, 
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The total probability of central collisions will be given by 
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     From equations (2) and (3) using least square fitting tech-
nique Z function distribution can be written in the form [14, 17], 
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Where, 
kC values are represented in table (1), 

2.1 CHARGED PION PRODUCTION FOR HADRON-   NUCLEUS 

COLLISIONS 

 

The number of created pions from each fireball ( n ) will be 

given by,  
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Where, Q is the free energy which is carried by the two fire-
balls,  is the energy required for the creation of one pion. 

 From Eqs. (6, 7), the probability of the emission of any num-

ber of pions ( 0n ) from one fireball in the peripheral collision 

can be obtained in the form: 
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It is clear that at a given impact parameter, Eq. (7) gives the 
total number of created particles (i.e. charged and neutral par-
ticles). 
           According to the above scheme, the charged multiplicity 
distribution will be given by,                                            
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, )( 2n   is the Poisson distribution of the form,  
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Where, N:  is the number of pairs of created particles from one 

fireball (
2

0n
N  ), 2n the number of pairs of charged pi-

ons,
2

1
2




n
n , P the probability that the pair of pions is 

charged.                          
The number of negative particles from one fireball equals the 

half of new created charged pions 
2

chn
n                                                                                

      The probability distribution of negative particles  )
-

(n P is 

the same as the probability distribution of charged particles   
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TABLE 1 

kC VALUES FOR CONSIDERED INTERACTIONS 
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3    ARTIFICIAL NEURAL NETWORKS (ANNS) 

ANNs are composed of interconnecting artificial neurons 
(programming constructs that mimic the properties of biologi-
cal neurons). Artificial neural networks may either be used to 
gain an understanding of biological neural networks, or for 
solving artificial intelligence problems without necessarily 
creating a model of a real biological system. The real, biologi-
cal nervous system is highly complex: artificial neural network 
algorithms attempt to abstract this complexity and focus on 
what may hypothetically matter most from an information 
processing point of view. 

The neuron transfer function, f, is typically sigmoid or step 
function that produces a scalar output (n) as in Eq. (12): 

 
                   bIwfn

i ii                                       (12) 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
Where,

iI ,
iw , b  are the 

thi input, the 
thi weight and b the 

bias respectively. 
A network consists of one or more layers of neurons. A layer 
of neurons is a number of parallel neurons. These layers are 
configured in a highly interconnected topology as shown in 
figure (1).  
 
 
4   TRAINING OF THE H-A-ANN 

Neural network can be trained to perform a particular 
function by adjusting the values of the connections (weights) 
between elements. Training in simple is to make a particular 
input leads to a specific target output. The weights are adjust-
ed, based on a comparison of the output and the target, until 
the network output matches the target. Typically many such 
input/target pairs are used, in this supervised learning, to 
train a network. 

The proposed ANNs in this paper was trained using Le-
venberg–Marquardt optimization technique. This optimiza-
tion technique is more powerful than the conventional gradi-
ent descent techniques [27-31].  

The Levenberg–Marquardt updates the network weights 
using the following rule, 
 

eJIJJW TT 1)(    
 

Where, J is the Jacobean matrix of derivatives of each error 
with respect to each weight. 

TJ is the transposed matrix 
of J ; I is the identity matrix that has the same dimensions of 

JJ T , is a scalar; changed adaptively by the algorithm and 
e is an error vector. 

The only requirement for this method is a considerably 
large memory for large problems. The initial training weights 
were also chosen using the Nguyen–Widrow random genera-
tor in order to speed up the training process [27-31]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

―Figure 1. Neuron model‖ 
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5 RESULTS AND DISCUSSION 

Charged and negative pions multiplicity distributions, Eq. 
(9, 11), are calculated for 40Arp  , 131Xep  , 197Aup   
and 4Hep  assuming   in Eq. (11) is given by : 

bna                                                                                          
Where, a = 0.04, b= 0.35 as in references [14, 17, 18]. The results 
of these calculations are represented in figure 2 (a, b, c, d, e) 
and figure 3 (a, b, c, d, e, f) along with experimental data [32, 
34] which show fair agreement with the corresponding exper-
imental data. It can be seen from figs. (2, 3) that charged and 
negative pions multiplicity distributions are not in accordance 
with the experimental data for heavy nuclei although the situ-
ation becomes better for the light ones. The emission of sec-
ondary particles is assumed to follow a Poisson distribution. 
As mass number increases the multiplicity distribution is not 
broaden but its peak is shifted to high numbers.  

We have also calculated the same collisions by using ANN 
model and these calculations are represented in figs (2, 3) 
along with the same experimental data [32-34].  We have also 
found great variations compared to PTFM. 

Different configurations of network structure were investi-
gated to achieve good mean squared error (MSE) and good 
performance for the network using the input-output arrange-
ment. The input and target vectors are randomly divided into   

three sets (validation set, training set, testing set), 80% of the 
vectors are used to train the network and 20% of the vectors 
are used to validate how well the network generalized.  

  
 

 
 
 
 
 

 

 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The proposed neural network model of charged and nega-

tive pions multiplicity distributions of 40Arp   , 131Xep   
, 197Aup  and 4Hep  collisions at 200 GeV/c  have three   
inputs ( APn Labch ,, ), one output )( chnP and two hidden lay-
ers of 23, 22 neurons, for charged pions, two hidden layers of 
24, 21 neurons for negative ones. The transfer functions of the 
first and second hidden layers were chosen to be a tan sig-
moid, while the output layer was chosen to be a pure line. The 
trained method which used to train the ANN model is Leven-
berg-Marquardt optimization technique, with number of   
epochs=19, performance of order 

510
 for charged pion pro-

duction and epochs=10, performance of order 
410

 for nega-
tive ones. 

 

 

 

 

 

 

 

 

 

―Figure 2. Comparison between the experimental and 
simulated multiplicity distribution of charged pi-
ons )( chnP for Ah collisions at 200 GeV/c:(—) NN 
model, (……) PTFM, ( ) experimental data‖ 
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It is should be emphasized that when the mass increases 

the multiplicity distributions of charged and negative pion 
production using ANN are consistent with all regions of the 
experimental data (low, medium, high multiplicity). In contra-
ry with PTFM, the theoretical calculations are inconsistent 
with the experimental data especialy at high multiplicity. That 
is why; we use the ANN technique because it is able to exactly 
model the multiplicity distribution for different beams in had-
ron nucleus interactions. 

APPENDIX   

Our obtained function for charged and negative pions in h-A 
intteractions is generated using the obtained control NN pa-
rameters as follows: 
The structure of the network is 3-23 -22-1 for charged pions and 
3-24 -21-1 for negative ones. The obtained equation which de-
scribes the multiplicity dustribution of charged and negative 
pions in h-A intteractions for different beams (projectiles), dif-
ferent mass numbers (nucleii) at the same energy is given by: 
 

..{tan).2,3(.[{)( netsigmoidLWnetpurelinenP ch      

)}1(.).1,1(.{tan).1,2( bnetPIWnetsigmoidLW   

)}]3(.)}2(. bnetbnet   

 
Where, pure line is linear transfer function, tan sigmoid is hy-
perbolic tangent sigmoid transfer function. 
P  is the input which is ( APn Labch ,, ). 

)2,3(.LWnet linked weight between the second hidden layer 
and the output. 

)1,2(.LWnet linked weights between the first and the second 
hidden layer. 

)1,1(.IWnet linked weights between the input layer and the 
first hidden layer. 

)1(.bnet is the bias of the first hidden layer. 

)2(.bnet is the bias of the second hidden layer. 

)3(.bnet is the bias of  the output layer.  
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